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Analysis of Nearest Neighbor Interactions in the Pyrimidine Triple Helix
Motif by Affinity Cleaving.

Affinity cleaving studies provide evidence that nearest neighbor interactions
affect the relative stabilities of triple helices. Several groups of target duplexes were
synthesized with a central base triplet held constant and the adjacent 3' and 5'
triplets systematically varied. By incorporating a thymidine residue with the DNA-
cleaving moiety EDTA in the third strand, the relative stabilities of Hoogsteen base
triplets T'AT and C + GC as well as the newly discovered base triplets GTA, Z-TA,
and D3 "CG were assessed in the context of different sequences. The T'AT triplet was
shown to be relatively insensitive to substitutions in either the 3' or 5' directions,
while relative stabilities of triple helices containing C + GC triplets decreased as the
number of adjacent C + GC triplets increased. Triple helices incorporating a G'TA
interaction were most stable when this triplet was flanked by two TAT triplets, and
were most aversely affected when a C+GC triplet was placed in the adjacent 5'
direction. In contrast, complexes containing a D 3"TA interaction were destabilized
when the adjacent 3' position was occupied with a C+GC triplet. The D 3 "CG
interaction displayed the same binding preferences. New guidelines for targeting
sequences containing pyrimidine base pairs have been developed.
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Biochemistry

Analysis of Nearest Neighbor Interactions in the
Pyrimidine Triple Helix Motif by Affinity Cleaving.

L. L. Kiessling and P. B. Dervan*

Arnold and Mabel Beckman Laboratories of Chemical Synthesis
California Institute of Technology

Pasadena, California 91125

Oligonucleotide-directed sequence specific recognition of double helical DNA is
length and sequence composition dependent. In order to disect the relative
importance of' nearest neighbor interactions on triplet stabilities, binding by
oligonucleotides of different sequence composition has been characterized by affinity

cleaving. Several groups of target duplexes were synthesized with a central base
triplet held constant and the adjacent 3' and 5' triplets systematically varied. By
incorporating a thymidine residue with the DNA-cleaving moiety EDTA in the third

strand, the relative stabilities of Hoogsteen base triplets T'AT and C + GC as well as
the newly discovered base triplets G-TA, Z'TA, and D3 "CG were assessed in the
context of different sequences. The T.AT triplet was shown to be relatively
insensitive to substitutions in either the 3' or 5' directions, while relative stabilities

of triple helices containing C+GC triplets decreased as the number of adjacent

C + GC triplets increased. Triple helices incorporating a GTA interaction were most
stable when this triplet was flanked by two TAT triplets, and were most aversely
affected when a C + GC triplet was placed in the adjacent 5' direction. In contrast,
complexes containing a D3 TA interaction were destabilized when the adjacent 3'
position was occupied with a C+GC triplet. The D 3"CG interaction displayed the

same binding preferences. New guidelines for targeting sequences containing

pyrimidine base pairs have been developed.
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5'- T T T T TTT T T TTT TT T -3' 1
5' TTTTTCTTTT-*

5'- TTTTTTTTTTTTTT-3' 2
5' TTTTCCTTTT-*

5'- TTTTTTTCTTTTTTT-3' 5
5'TTTTTCTTTT-*

5'- TTTTTTCTCTTTTTT-3' 4

5'- TTTTTTCTCTTTTTT-3' 5

5'-C5'-CTTTTTTCCTTTTTTT3AAATT -3

3'- GGGGGGGGG GTTTTTTN6 .NSN 4 TTTTTTAAAAA -5'

NINA 3= AAA 9a NA 6 =TTT 9b
N IN2 N3 =AAG 10a N ANo= CTr 10b
N IN2 N3 = GM la N AN 6= TTC lbb
N 1 N2 N3 =GAG 12a N ANN6= CTC 12b
N 1N2 N3 =AGA 13a N A N6 =TCT 13b
N 1N2 N3 =AGG 14a N 4N5N6 =CCT 14b
N 1N2 N3 =GGA 15a N ANN= TCC 15b
N1 N2 N3 =GGG 16a N AN,= CCC 16b



Triplet TeAT C+GC

N, A A GG A AG G

N 2 =A A AA G GG G
N 3 A G AG A GA G
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5'-TTTTTTT ITTTTTTT-3! 17
5*TTTTT CTTTT3*1

5'-TTTTTTTTICTTTTTT-3 19

5'-TTTTTTCITTTTTTT-3 19
5'TT TT TG TT TT-*2

5'-TTTTTTCICTTTTTT-3 20

5'-TTTTTTCGTTTTTTT-3 21

5-TTTTTTCGTTTTTTT-3 23

5'- CCCCCCCCCCAAAAAANN 2 N3 AAAAAA)TTTTT -3
3'- GGGGGGGGG TTTTTNONON4 TTTTT TJAAAAA -5'

N INA =ATG 26aN 4 N SN6 =CAT 26b

N1N 2 8a ~ N4N 5N6 =CAC, 28b

5'- T TT T TTT DT TT TT TT -3 29

I DTTTTTC T T T TT - 30
5'- TTT T T T CDT TT TT T T -3 31
5'- TTT TT T CD 3 C TT TT TT -3! 32

5- #CCCCCCCCC-,CAAAAA ANN 2 NAAAAAATTTTTT-3!
3'- GGGGGGGGGI TTTTT TN6 NN 4 TTTTT TAAAAA -5'

N1N2Ns= ATA 25a I I N NN6 =TAT 25b
N1N2Ns 2 =ATG 26a N 4 NSN 6 =CAT 26b
NINAN 5 =GTA 27a N 4 5 N 6=TAC, 27b

N1N2 N 3 =GTG 28a N 4 NSN 6 =CAC 28b
N1N2N3 3=ACA 33a N4N5N6 6 =TGT 33b

N1 2 3 = ACG 34a N 4 NS*= CGT 34b
NINA= GCA 35a N4NS No6=TGC 35b

NtN 2N3 =GCG 36a N4 S 6 = CGC 36b



Triplet IoTA G*TA D3.TA DSCG

N= A AGG A A GG A A GG A AG G
N 2 =T TT TT T TTT T T TT C CT T
N 3 = AG AG A G A G A G AG -A GAG
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Target Sequence G D

5'- ATA -3' +++
ATG ++ +

GTA + ____

GTG ___

5'- ACA -3' -+

ACG ___

GCA-
GCG__ _ __ _ _


